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ABSTRACT

With digital storage becoming cheaper, bigger, and more prevalent, finding evidence from the
hard drives collected for a case is too difficult and time consuming. Simply reading an entire
drive takes hours and it takes even longer to analyze the drive for deleted files and data frag-
ments. Investigations frequently involve multiple drives, and this traditional method of reading
entire drives for analysis simply cannot keep up in modern cases. Furthermore, investigators
often search drives only for known files, which we call target data, that could help identify a
drive holding evidence such as child pornography or malware. Triage is needed to sift through
drives to quickly identify drives containing target data. One way is by randomly sampling drive
data to find known files or to give a confidence that less than some small amount is present.
We determine the optimal sampling strategy bypassing the file system to find even deleted files
and fragments in minimum time with maximum confidence. With 15 minutes of sampling we
can give a 90% confidence that less than 10MiB of target data is present on a 500GB hard disk
drive. By using statistical sampling in combination with sector hashing, our software forms an
efficient triage tool for digital forensics.
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CHAPTER 1:
Introduction

Modern technology has enabled criminals and terrorist organizations around the world to reach
new levels of sophistication, and many crimes in the physical world have some ties with the
digital world. Even for non-cyber crimes, we live in a society where the typical person uses
computers, phones, and other digital devices in daily activities. Furthermore, digital evidence
has an increasingly important role in court.

For example, in 2011, a massive riot in Vancouver unleashed a police investigation that brought
in thousands of tips from the public including images, videos, and links to social media identities
[1]. Sergeant Dale Weidman, an investigator on the case, commented that “the sheer volume and
speed of the information is overwhelming.” In both cyber and non-cyber crimes, investigators
and digital forensic examiners have the difficult task of finding key data that can be used as
evidence in criminal cases. There is no shortage in demand for digital investigations, yet the
time it takes to conduct full examinations is steadily increasing. This is largely due to the
huge advances in storage capacity over the past few decades. This combination of demand and
technology has caused a backlog of digital forensic examinations which has been frequently
documented by major organizations such as Dell [2] and the FBI’s Regional Computer Forensics
Laboratories [3].

A primary reason for this backlog is the sheer volume of data that must be consumed and
analyzed. The FBI Regional Computer Forensics Laboratories reported that in 2011, they con-
ducted 7,629 examinations and processed 4,263 terabytes of data—nearly a dozen terabytes of
data per day [3]. The Defense Computer Forensics Laboratory conducted 1,406 examinations
and processed 835 terabytes of data in 2012 [4]. Hard drive technology has improved signifi-
cantly since first introduced in 1956, both in terms of performance and capacity. The growth in
capacity has severely outpaced the gains in performance where the physical limits of spinning
disks have reached the point of diminishing returns making the cost of better performance not
worth the performance gained. Although much faster solid state drives are now available for
consumers, their cost is significantly higher than traditional hard disk drives whose cost per
storage unit is unrivaled guaranteeing their presence on the market for years to come. Hard disk
drives take a long time to process as it takes two to three hours to simply read all of the contents
of a consumer grade terabyte hard drive. In addition, popular forensic tools such as EnCase
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take additional processing time before the examiner can begin analysis of the drive. This poses
a challenge to forensic examiners who must determine how to spend their time. Consequently,
triage is necessary in digital forensics where the limiting factor is not a lack of ability to ex-
amine hard drives but time. With limited time, the examiner must pick and choose which hard
drives in a case to look at first. There is currently no easy or automatic way to find hard drives
that are of interest without investing a considerable amount of time looking at contents.

These difficulties on top of the demand for the timely identification of forensic evidence at the
scene of the crime or within a short time period make the current approach to digital forensics
too slow. Richard and Roussev noted in 2006 that cases are becoming increasingly complex
due to “terabytes of storage becoming more common and cases routinely involving more than
a single computer” and that “significant levels of innovation” will be required for the next
generation of digital forensic tools [5]. What we need is a new tool or technique to perform
cyber forensic triage to quickly identifying high-value targets to counter the proliferation of
digital devices [6]. A common source of evidence, the hard drive, may be the first thing that
an investigator will go through. To perform triage, the investigator may take a quick look to
see if any interesting files are on the drive. The conventional hard drive forensic tool reads the
entire content of a hard drive and attempts to locate data that would be useful to the investigator.
These tools will often, though not always, use the file system to browse the directory listing and
identify files. This allows all non-deleted files to be found and obtain additional metadata about
these files such as time stamps. Then, it will go through the unallocated areas to try to find files
or even fragments of files. Finally, it would index the data so that the investigator can search by
file type, name, or even content. This can take a long time, especially if there are many drives
to sort through.

It is not necessary for the investigator to search by hand for first tier triage. An investigator
may only be looking for the presence of certain data that will indicate that the drive may con-
tain high-value data. Cryptographic hashes are frequently used in computer forensics to build
a digital signature that is unique to that file and can be used to compare two pieces of data and
quickly determine if they are identical. The bottleneck is not the speed at which hashes are
being compared, but the speed that data can be read from a drive. Young, Foster, Garfinkel,
and Fairbanks presented an approach with the speed of hashing, but instead of using file hashes,
they use sector hashes [7]. By using this technique, file systems, metadata, and other extrane-
ous details can be discarded and the presence of known files can be detected merely by going
through the hard drive from front to end, hashing each sector individually, and looking the hash
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up in the database to determine if a known file is present. Using sector hashing, reading the
whole drive is often not necessary. Garfinkel and Nelson used statistical sampling on a drive
with known files and calculated that only a small fraction of the drive needs to be sampled to
reach a relatively high probability of finding at least one sector containing target data [8]. In
addition to being able to use sampling techniques, sector hashes allows file fragments and files
that have been modified to be detected. Simon Key developed an EnCase script that uses this
approach to rebuild incomplete files on drives from a good hash map [9].

By combining sector hashing and statistical sampling, investigators can perform drive triage in
mere minutes instead of in hours. We present an optimal strategy for sector sampling triage, or
more specifically, the ideal number and locations of sectors to minimize the sampling time while
giving the maximum confidence if target data are not found. Building on the sampling pattern,
we develop a confidence model and verify through experimentation that our model works and
that sector sampling is in fact faster than a traditional full drive analysis. Finally, we attempted
to describe how sector sampling should be performed, how much of a benefit it provides, and
how an actual implementation would work. Over the course of the project, we also attempted
to develop a quick way to estimate the time needed to achieve a certain probability of finding
known files.

We began by testing and analyzing hard drive random sampling performance using small sam-
ple sizes and sector ranges to find sampling characteristics. Next, a probability model was
developed that would take into account the unique ways that sectors can be read and contain
file data. Then, the results of the sampling performance analysis was used to predict how long
it would take to sample enough sectors to reach a target probability. Lastly, the probability
and prediction models were tested on real and simulated drives to verify their accuracy and
determine how long it takes to sample a drive. We developed a tool called drivesampler that
incorporates the knowledge gained to efficiently find known data. In the remaining chapters,
we discuss the concept and importance of the transaction size and how it influences every de-
tail in efficient drive sampling. Chapter 2 provides a background on the limited prior work
on sector sampling and hashing. Chapter 3 defines terms and discusses in detail how a drive
is sampled efficiently and how the probability of finding files is calculated. Additionally, we
explain how drivesampler was designed and implemented. Chapter 4 contains an overview
of experiments to test performance and probability followed by the results of the tests. Finally,
Chapter 5 concludes this work with an overview of what we discovered, potential weaknesses
in our approach, and future work.
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CHAPTER 2:
Related Work

To our knowledge, sector sampling has not been widely adopted or studied. We were unable
to find many studies on hard drive performance and none regarding sampling performance.
Random sampling in general has been used for a long time in many fields and forms the basis of
the robust Monte Carlo method. In digital forensics however, applications of random sampling
has mostly been used for sampling files to reduce the number of files that needed to be examined
[10], [11].

In this thesis, we ignore the file system and use block based forensics—the analysis of file
fragments. File blocks are being examined in a variety of ways to support this type of forensics.
The National Software Reference Library (NSRL) which holds a large collection of known
software recently hashed the library on 4096 byte block boundaries to explore the usefulness of
this approach [12]. The ability to properly conduct block based forensics will be the key to the
success of sector sampling. The following are some prior work we found in this area.

Chaudhuri, Das, and Srivastava [13] present a technique to use block based random sampling
for identifying the contents of a large database. Their goal was to find statistics about a database,
such as building a histogram of its data. The most straightforward way of doing this is by taking
a uniform random sample of the data, however, this can be very inefficient because a single piece
of data often does not fill up an entire sector and more data than needed are being read from the
disk. This means that uniform sampling can be very expensive as most of the retrieved sector is
being discarded and additional data are needed to obtain the required amount of samples. The
natural solution is to not discard data and use the entire block that is read. The problem is that
this is no longer uniform sampling so a bias may occur if data are not stored randomly, e.g.,
in sorted order. Chaudhuri, Das, and Srivastava explain how to do statistical sampling using
entire blocks without having to discard data. Sampling the disk efficiently is important in the
context of forensics, but bias is a non-issue if we are simply looking for interesting data and not
comparing contents with each other.

Garfinkel and Nelson [8] showed that sector sampling is a fast way to identify the contents of a
storage device. In the simplest case, sampling can determine if a drive has been properly wiped.
By randomly sampling sectors we can determine the probability of finding a sector that is not
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empty. This is a case of the “urn problem” in probability theory [14] and forms the basis of
establishing confidence in sector sampling. The urn problem describes a simple scenario of an
urn filled with two types (black and red) of balls. If a 1 TB disk is represented as an urn with
two billion balls (sectors) of two colors (empty and non-empty sectors), and n balls are drawn
without replacement, the probability of finding x of the K non-empty balls within N total balls
can be represented with the hypergeometric distribution.

P(X = x) = h(x;n,K,N) =

(K
x

)(N−K
n−x

)(N
n

) (2.1)

More generally, this is easier to compute if we seek the probability that X = 0, or the probability
of finding only empty sectors.

P(X = 0) =
n

∏
i=1

((N − (i−1))−K)

(N − (i−1))
(2.2)

Using this general equation, we can find the probability of not finding data if we assume that
20,000 sectors (roughly 10MB) contain data on a two billion sector drive when 10,000 sectors
are sampled, as shown in Table 2.1. We know that there are data on the drive, so we are
interested in the probability of finding the data, i.e., how reliable it is. The probability of finding
data is simply the probability of not finding data subtracted from one.

p = 1−
n

∏
i=1

((N − (i−1))−K)

(N − (i−1))
(2.3)

By sampling 500,000 sectors, or 0.025% of the drive, the probability of not finding data is
0.00673. In other words, there is approximately 99% chance of finding data and knowing that
the drive has not been wiped properly. Table 2.2 shows the probability of not finding data when
taking 10,000 samples with different amounts of non-empty sectors [8].

The obvious benefit to sampling a drive is that it can be performed in a fraction of the time
that it would take to read the entire drive. Sampling 10,000 sectors in sorted order from a 1TB
hard drive using eSATA took an average of 88.4 seconds. For the sample empty/non-empty
problem above, a simple estimation shows that we can reject the hypothesis that the drive has
less than 10MB of non-empty sectors within minutes and achieve 99% confidence in 40 minutes
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Sampled sectors Probability of not finding data
1 0.99999

100 0.99900
1000 0.99005

10,000 0.90484
100,000 0.36787
200,000 0.13532
300,000 0.04978
400,000 0.01831
500,000 0.00673

Table 2.1: Probability of not finding any of 10MB
of data on a 1TB hard drive for a given number of
randomly sampled sectors. Smaller probabilities
indicate higher accuracy. From [8].

Non-null data Probability of not finding data
Sectors Bytes with 10,000 sampled sectors
20,000 10 MB 0.90484

100,000 50 MB 0.60652
200,000 100 MB 0.36786
300,000 150 MB 0.22310
400,000 200 MB 0.13531
500,000 250 MB 0.08206
600,000 300 MB 0.04976
700,000 350 MB 0.03018

1,000,000 500 MB 0.00673

Table 2.2: Probability of not finding various
amounts of data when sampling 10,000 disk
sectors randomly. Smaller probabilities indicate
higher accuracy. From [8].

compared with 200 minutes to read the entire drive. Two factors are discussed in their findings
that can improve sampling time. They found that reading sectors in sorted order performed
significantly better than random order. They also found that reading samples of 4KiB sectors
was slightly faster than 512-Byte sectors [8].

The sampling technique is well suited when combined with research done to identify distinct
blocks, or small unique chunks of data. Garfinkel, Nelson, White, and Roussev [15] analyzed
methods to perform block based forensics by looking for distinct blocks. They present one
approach using cryptographic hashes of individual blocks to identify files. They attempt to
identify unique fragments of files that only occur in a single distinct file, which they call dis-
tinct blocks. Their work forms the basis of how these distinct blocks can be used with sector
sampling to uniquely identify files on a hard drive. They found that user generated data such as
documents, images, and videos have enough entropy to be unique in most instances. One of the
problems they identified with block hashing rather than file hashing is that it takes a significantly
larger amount of space to store the hashes. A SHA1 database of all blocks on a terabyte drive
would require 40GB of storage which would not fit in the memory space of average consumer
computers.

Young et al. [7] continued the work on file identification using block hashes by looking at ways
to build a block hash database. Sampled drive blocks can be hashed and checked against the
database to look for known files. As explained above, it is infeasible to store a hash database in
memory so it must be stored on disk. The goal of the hash database was to “be fast enough to
support searches of hashes that are created by reading a consumer hard drive at maximum I/O
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transfer rate.” The “maximum I/O transfer rate” was not determined by experimental data but a
goal of 150,000 hash lookups per second was set based on the assumption that it takes approx-
imately 200 minutes to read a terabyte drive. Read speed is less than optimal with sampling,
so this rate is sufficient. Their article evaluated several back end databases for querying large
amounts of hashes based on how many records were in the database.

This thesis is based on several major facts learned from these prior efforts. First, we know that
sector sampling will save time. If we assume that there are even 10MB of data that we are
looking for, then we do not need to read the entire contents of a 1 TB disk to achieve a high
probability of reading at least one sector of the target data. Second, we know that individual
sectors are likely to be distinct for user generated data, which are often searched for in forensics.
Therefore only one known sector from most files is required to detect the presence of a file. This
sets the stage for a quick method of forensic analysis by checking if a drive has user generated
data that we are interested in.
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CHAPTER 3:
Methodology

Given a drive, our objective is to give information about the contents of a drive to the analyst
so that they can decide whether the drive is worth further investigation. Sampled blocks on a
drive can be analyzed in different ways, but our approach is to look for target data. Target data
are the content of any files that the user is looking for which are stored in a database in the
form of block hashes. These are not hashes of entire files, but the hashes of each 4KiB block
contained in the file. The basic strategy is to sample amounts of data across a hard drive, hash
the data blocks, and check if the hashes are present in the database. If a hash is found in the
database, then the drive is very likely to contain the files that the user is looking for. We cannot
say this with 100% certainty because of a possible hash collision from different files or files
that contain the same block. If no hashes are found after sampling, then a confidence level that
target data are not present can be computed using the probability that the sampling missed the
sectors containing the target data. We discuss how the confidence is calculated in Section 3.2.

The question then is how many sectors at a time should be read from a drive to maximize the
confidence of finding target data in the shortest amount of time? In order to determine the an-
swer to that question, we first examine how a drive is sampled, and then determine how to apply
the “urn problem” to calculate the probability of finding target data. This chapter discusses
our approach for applying sector sampling on a physical drive including potential problems,
followed by the experimental setup, and lastly an overview of our software drivesampler.

3.1 Definitions
These are terms that have a specific meaning in the context of this thesis.

size
Size refers to an amount of digital information represented in bytes. Adding a prefix, such
as kilo and mega, will scale the unit. The prefix can be an IEC binary modifier (powers of
two) or a SI decimal modifier (powers of 10). The SI prefix is only used in the context of
hard drive capacity. All other references to a size uses the IEC binary prefixes kibi (Ki)
for 210 and mebi (Mi) for 220.

sector
The smallest physical or logical unit of data addressed by a hard disk drive. 512 bytes
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has historically been the most common sector size. Modern drives use a sector size of
4096 bytes to reduce the overhead space required to store metadata for each sector [16].
For compatibility with older operating systems, drives may use 512 byte emulation where
data will be read from the physical disk using 4096 byte sectors but the data are passed
through the logical interface using 512 byte sectors [17]. In this thesis, we assume that
the physical and logical sector size is always the same, that a sector always holds 512
bytes, and that files start on sector alignments.

block
A block commonly refers to a group of data units. In this thesis, a block refers to a
contiguous set of sectors based on their logical ordering on the drive. Sector ordering is
determined by the drive controller, so they may or may not be physically next to each
other.

transaction
A transaction is the transfer of one block of data from the hard drive to memory.

transaction size
The transaction size is the number of contiguous sectors read at a time in bytes.

transaction block
The transaction block refers to the data block in memory after a read operation (transac-
tion) has taken place. We are able to successfully detect target data if a transaction block
that is read contains one or more target blocks.

target data
Target data are any known files that the user is interested in finding. We attempt to locate
target data by searching for target blocks.

target data size
The target data size is the amount of target data present on a storage device. This value
must often be assumed when calculating sampling statistics because the true amount of
target data is not known unless the entire contents of the device is checked.

target block or hash block
Target data are organized into target blocks by taking equally sized pieces of a file. The
size of the pieces is called the target block size. If the file size is not divisible by the target
block size, the remainder is currently thrown away. These chunks each become a target
block and its computed hash is stored in a database. For this reason, target blocks can
also be referred to ask hash blocks.
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target block size or hash block size
The target block size is the size of the target block that is hashed. The target block size
must be a multiple of the sector size. In this thesis, a target block size of 4KiB is assumed.

lookup
A lookup is the act of taking a target block retrieved from a device, computing the hash
of the block, and querying a database to check for the presence of the hash.

confidence
The confidence refers to the probability that there are no more than a certain amount of
target data, chosen by the user, on the target drive. The true probability cannot be known
unless the content of the entire drive is already known, which would defeat the purpose
of sampling. Instead of finding the true probability, we assume that some amount of
target data are present on a drive in a way that is least likely to be found. Under these
assumptions, the program can say that we are x% confident that there are less than the
assumed amount of target data on the drive. See Section 3.2 below for a discussion on
confidence.

3.2 Goals: Confidence and Time
Statistical sampling is a robust technique that can estimate the characteristics of an entire popu-
lation by choosing only a small subset of the population. This has the advantage of lowering the
cost to measure the population. The disadvantage is that this is only an estimate and the actual
characteristics cannot be known unless the entire population is measured. An estimate always
has some sampling error, and this is reported as the margin of error in surveys. The margin
of error is dependent on the sample size, because larger sample sizes generally means higher
estimation precision. Picking an optimal sample size can be a problem as the most accurate
results is desired with the smallest sample size. There are various ways of determining how
large the sample population for a survey should be, usually based on how much room for error
is tolerated. In sector sampling, the population is the entire data content of the drive and we
attempt to minimize the cost (time) to find interesting content, called target data, on the drive
by sampling. The question is how big should the sample size be?

As stated in the beginning of the chapter, our objective is not to find all the target data, but to
determine if any are present or not. After sectors are sampled from a drive and checked, there
are two outcomes: target blocks were found or not found. If target blocks were found, then
the user only found further proof of what they likely already suspected. The more interesting
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and difficult case is when target blocks are not found. This could mean that target data are not
present, or it could simply mean that the sampling missed the target blocks. There is no way
to be certain that target data are not present unless the entire drive is read, but it is certain that
some target data are present if at least one target block is found by sampling. In other words, it
is much more difficult to prove that target data are not present which would be the more useful
information for triage.

Instead of proving that target data are not present, we assume that there are some amount of
target data present and calculate the probability that the sampling misses the target data. The
probability can be calculated using the drive capacity, the amount of target data, and the sample
size as discussed in detail in Section 3.3.1. We define confidence to be this probability sub-
tracted from one because we are x% confident that there is less than the assumed amount of
target data present on the drive. We use 10MiB as the assumed amount of target data as this
would hold only two or three high quality pictures or a short video—likely not enough to be of
significant interest if overlooked. With a confidence and size of target data, the sample size can
be computed. For example, we can ask “how many samples are needed to be 90% confident
that there are less than 10MiB of target data on this 1TB drive?” The sample size is directly
related to the time spent sampling, so the question can be asked in other ways, such as “what
% confidence can be achieved given 15 minutes of sampling?” The answers can vary even on
the same drive depending on the sampling strategy and target data layout, both of which are
discussed in detail in the following sections.

It is up to the user to decide on how confident to be. Obviously, the higher the confidence, the
more samples are required and takes more time. Desired confidence and time spent must be
weighed, but more time can always be spent sampling to raise the confidence. The entire drive
can be examined to be 100% confident, but how much data is needed for a high confidence?
Figure 3.1 shows the percentage of data required from a 1TB drive with 10MiB of target data
to achieve a confidence when sampling 4KiB blocks at a time using our sampling strategy. It is
noteworthy that only 1.4% of the drive is needed for 99% confidence.

3.3 Transaction Size and Sampling Strategy
Like a political poll where the sample population and location are selected carefully, some
thought must go into how a hard drive is sampled. Unlike people, files are present on drives
in various ways and could be spread across multiple sectors. A block is defined as contiguous
sectors, and contiguous sectors may be required to successfully identify a file. It is therefore
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Figure 3.1: Percentage of data required from a 1TB drive with 10MiB of target data sampling 4KiB
at a time. The dotted lines show that 1.4% of the drive is required for 99% confidence. Note that
the entire drive is required for 100% confidence. The data required can change depending on the
transaction size (see Section 3.3).

necessary to perform sampling in blocks, called transaction blocks, rather than individual sec-
tors. The transaction size, or the size of the block that is being read, is something that we look at
extensively because it has a huge impact on how fast sampling can be. The following discusses
how transactions and target data are related.

For the purpose of our experiments, we use a target block size of 4096 bytes (4KiB). This means
that we assume that target data are grouped into contiguous sectors of 4KiB. Any data less than
4KiB in size are considered too small to be identified. Young et al. [7] discuss the benefits and
potential pitfalls of using 4KiB over smaller block sizes. Using a smaller block size means that
target data do not have to be in as large contiguous sectors, but there is also less entropy to
identify distinct files. However, using a larger block size also significantly reduces the number
of records that must be indexed and searched when attempting to identify a given block. This
does not mean that target blocks will be at 4KiB offsets. It is always assumed that the drive
store data at sector offsets in sector sizes (512B). Figure 3.2 shows the layout of a drive with
sectors and blocks.

Next, we consider the transaction size, or the amount of data read per sample. At a minimum,
this should at least be the target block size to be able to identify target data. A smaller transaction
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. . . . . 

Total blocks (N) 

4KiB block 

512B sector 

Figure 3.2: All data on a drive are stored in 512B sectors. It is assumed that target data are located
in blocks of eight contiguous sectors, creating 4KiB blocks.

size will allow for more samples and increase the odds of locating target data. However, using a
larger transaction size reads data faster because drives are optimized to read contiguous sectors.
Choosing the most efficient transaction size is a difficult problem and can greatly affect the
probability of locating target data. The simplest case is when the transaction size and target
block size are the same. Let us assume for now that target blocks will always be block aligned.
For this scenario, the drive can be divided into block size segments as seen in Figure 3.3.

. . . . . 

Target Data 

4KiB block 

Figure 3.3: Target data must be on the drive in blocks. In our implementation, target blocks are
4KiB. This is a sample drive with two target data blocks.

This can be represented by the urn problem model where each ball represents a block of data
and the balls combined represents all of the data on the drive. Each ball can either be a “red”
target block or “black” non-target block. For every block that is read, a ball is removed from
the urn. We can then use Equation 2.3 where M is the number of target blocks, N is the total
number of blocks, and n is the number of blocks read to get the confidence of finding at least
one target block.

The most important detail is that when the transaction size and block size are equal, one trans-
action yields exactly one block lookup. Let us now remove the assumption that target blocks
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are block aligned and can now start at any sector boundary. If we continue to sample at block
boundaries, only target blocks that are block aligned can be found. As seen in Figure 3.4 non-
block aligned target blocks can be missed as each transaction will only see part of the data
which is not enough to identify it as a target block.

. . . . . 

4KiB block Transactions 

Found Not Found 

Figure 3.4: When sampling at block boundaries, target blocks are missed if they do not start on a
block multiple and cross a block boundary.

The first way to get around this problem would be to sample at sector offsets. By sampling
blocks at any sector offset, we capture every possible position that a block can be in. Unfortu-
nately, this quickly creates a few problems. The initial problem is that if the previous algorithm
is used for scheduling, sectors may be read multiple times, each time as a part of a different
block which would be inefficient. If we use a smarter algorithm that avoids duplicate reads, this
is no longer the simple urn problem and complicates the confidence calculation. We want to
keep the scenario as an urn problem so that the confidence is fast and easy to compute.

. . . . . 

4KiB block 
“Block aligned” 

Transactions 

“Sector aligned” 
Transactions 

Figure 3.5: With sector aligned sampling target blocks at any offset can be found, but this causes
redundant reads and complicates confidence calculations.

A better solution would be to use a transaction size that is larger than the target block size (see
Figure 3.6). A larger transaction size increases the chances of finding target blocks as by reading
more data at once, the start and end points do not have to be perfectly aligned. Additionally, it is
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possible to look up all sector aligned blocks in the range of data read. For example, doubling the
transaction size to 8KiB results in 9 block lookups and a 16KiB transaction size gives 25 sector
aligned blocks. However, a larger transaction size means there are fewer samples obtained in
the same time period as the smaller transaction size.

. . . . . 

4KiB block 

8KiB Transaction 

Figure 3.6: An 8KiB transaction size would be able to read 2 sequential blocks and check for target
blocks at any sector offset for a total of 9 block database lookups. This is a huge improvement over
4KiB sampling.

With larger transaction sizes, non-block aligned blocks can be found as long as the transaction
fully covers the block. A problem still exists because if reads only take place at transaction off-
sets, there is always the chance that the block spans two transactions as illustrated in Figure 3.7.

. . . . . 

4KiB block 

8KiB Transaction 

Not Found 

Figure 3.7: Using a transaction aligned sampling method will result in the original scenario where
some target blocks are not found.

This problem of having blind spots can be fixed by slightly overlapping the transactions with
each other. Missed blocks are those that begin near the end of a transaction and the entire target
block does not fit in the transaction. Instead of starting the next transaction block at the end
of the first transaction block, we start at the first block that does not fit in the first transaction
block. The size of the overlapping area is always the block size minus the sector size, as shown
in Figure 3.8. The downside to this method is that it is slightly inefficient as some sectors are
read twice. Increasing the transaction size will reduce the total number of transaction blocks
which minimizes the amount of overlapping sectors.
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Offset 0 to 8 
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transaction 1 

Offset 9 to 18 
captured by 

transaction 2 

Shaded area is one 4KiB block. 
The lighter shade is the 
overlap between the 
transactions which is the block 
size minus sector size 

Figure 3.8: In order to capture all sector alignments, transactions must overlap by block size minus
sector size.

3.3.1 Confidence Calculation

3.5KiB . . . . . . . . . . 

. . . . . 

Sector size (S)  

Transaction size (T) 

T 

Transaction overlap 

Figure 3.9: Data will be read from the drive in transaction size (T) blocks. With a target block size
of 4KiB, the next transaction offset is 3.5KiB less than the end of the transaction window.

With our sampling strategy discussed in Section 3.3, we can now calculate our confidence.
Figure 3.9 shows how transactions take place across a whole drive. This can be represented
using the urn problem described above. Given N total balls (all possible transactions) of which
K of them are red balls (transactions containing target blocks), we can find the probability
of removing at least one red ball after n removals without replacement (unique transactions)
using Equation 2.3. In other words, we find the probability of getting at least one transaction
containing a target block.
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N and K can be found before sampling begins. N is total amount of possible transactions which
can be defined as

N =

⌈
C

(T − (B−S))

⌉
(3.1)

where C is the total data capacity of the drive, T is the transaction size, B is the target block
size, and S is the sector size.

K is the number of transactions that contain target data. This value can change depending on
the layout of the target data on the drive. Different ways that target data can be on a drive are
discussed in Section 3.3.2. Here, we assume the worst case layout to find the lower bound of
the probability. In other words, we use the minimum number of transaction blocks that can fit
the target data. Then

K =

⌈
D
T

⌉
(3.2)

where D is the amount of target data and T is the transaction size.

Assuming that we have found an optimal transaction size, the only remaining variable is n which
is the number of transactions which can only be determined at run-time and increases over time.
Now, if we plug these values into Equation 2.3, the confidence is

p = 1−
n

∏
i=1

((⌈
C

(T−(B−S))

⌉
− (i−1)

)
−
⌈D

T

⌉)(⌈
C

(T−(B−S))

⌉
− (i−1)

) (3.3)

where C is the total data capacity of the drive, D is the amount of target data, T is the transaction
size, B is the target block size, and S is the sector size. All variables except for n are constant
at run-time once the optimal transaction size is determined. Using this equation, the number of
samples required for a target confidence is computed and then sampled. Figure 3.10 shows how
using different transaction sizes affect the number of samples required. The key here is that
a small transaction size requires fewer samples than a larger transaction size. This is logical
because doubling the transaction sizes roughly halves the number of total transaction blocks on
the drive. Fewer total transactions means that more samples must be taken to achieve the same
confidence. However, this does not necessarily mean that smaller transaction sizes are better
because the speed gained by reading larger transactions may offset the disadvantage.
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Figure 3.10: Percentage of data required from a 1TB drive with 10MiB of target data using different
transaction sizes. The entire drive must be read for 100% confidence. Generally, smaller transaction
sizes means that less data are required. 4KiB is a special case discussed in Section 3.3.3.

3.3.2 Target Data Layout
Target data so far have been assumed to always be in 4KiB blocks and that anything less than
a block can not be found and hence does not count as a red ball, however, most files are not
likely to be exactly 4KiB. Files can be much greater, and there is no guarantee that the data
exist in sequential sectors. We call an arrangement of the target data on the drive a “target data
layout.” Unfortunately, the target data size or layout is not known unless the entire drive is read
and analyzed so we must make an assumption about how much target data are on the drive and
where the data exist on the drive.

. . . . . 

Figure 3.11: Best case layout example. The best case target data layout is when there is exactly one
target block per transaction block. The target data are spread out across as many transaction blocks
as possible.

For uniform random sampling, the probability of finding target data is highest when the target
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data are spread out through as many transactions as possible in blocks of an identifiable size
(4KiB in our case). As seen in Figure 3.11, in this scenario there is exactly one target block
contained in each transaction block, no more and no less. This maximizes the transactions that
contain a target block, or in other words this is the maximum number of red balls in the urn
problem analogy. We call this the best case layout. However, most file systems tend to group
blocks of the same file together to avoid fragmentation of files, so files larger than 4KiB are
more likely to be contiguous. This increases the number of target blocks per transaction which
means that there are fewer transactions containing target blocks, reducing the chances of finding
target data.

. . . . . 

Figure 3.12: Worst case layout example. The worst case target data layout is when non-contiguous
transaction blocks are filled as much as possible with target data. This creates the minimum number
of target transaction blocks.

The worst case layout is when all target data are distributed across as few transactions as pos-
sible. This occurs when target data are in blocks equal to the transaction size and are not in
contiguous transaction blocks. They cannot be contiguous because of the transaction overlaps.
Contiguous transaction blocks share some data so less target data are required to fit two con-
tiguous transaction blocks than non-contiguous transaction blocks. In the urn problem analogy,
this layout minimizes the number of red balls.

1-Part 

2-Part 

10MiB  

5MiB  5MiB  

At least 1 transaction apart 

Figure 3.13: N-part layout example. Files are more likely to be in chunks, so the n-part layout is
used for a more realistic scenario. The target data are split into n equally sized chunks and placed in
non-contiguous transactions.

In real-world environments, it is unlikely to see the best or worst case layout but we will always
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assume the worst case when calculating the confidence. By using the worst case scenario, the
confidence cannot be any lower. There is one special case where this is not true when the
transaction size is equal to the target block size, and is discussed in Section 3.3.3. We also
experimented with other layouts such as the n-part layout, where n is the number of equal parts
that the target data are split into and placed in non-sequential transactions.
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Figure 3.14: Percentage of data required from 1TB drive for 90% confidence with different layouts.
Splitting the target data into more parts increases the number of target transactions and fewer samples
are required. The more extreme 128-part layout clearly shows this effect.

Figure 3.14 shows the effects that the target layout can have on the data samples required. The
n-part layouts produce slightly more target transaction blocks than the worst case because of
the overlapping portions of contiguous transaction blocks sharing target data. While the shared
data is small compared to the non-shared data, there is a noticeable difference for very large
transaction sizes. Similarly, the 2-parts and 4-parts layouts produce a similar effect of slightly
increasing the number of target transaction blocks at large transaction sizes by splitting the data
into smaller pieces. The smaller transaction sizes are not as affected because when the target
data are broken up into small pieces, large transactions are not fully filled with target data and
generates extra target transaction blocks. A very high n-part layout is close to the best case
scenario. A 2560-part layout would be equivalent to the best case scenario for 10MiB of target
data because 10MiB can be split up into 2,560 4KiB pieces. This effect is clearly demonstrated
in the 128-parts layout because each transaction block only contains a small piece of the target
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data, increasing the number of target transactions. For example, 10MiB of target data fills 10
1MiB transaction blocks in the worst case layout which puts as much target data as possible into
non-contiguous transaction blocks. In the 128-parts layout, the target data are split up into 128
pieces of 80KiB each, so if the transaction size is greater than 80KiB, not all of the transaction
block is target data. This inflates the number of target transaction blocks to a minimum 128,
one for each piece, even though the target data could fit in just 10. The more pieces that the
target data are in, the more transaction blocks they occupy and therefore fewer samples are
required. Unfortunately, we cannot take advantage of this because it is impossible to know the
target layout on a drive without reading and analyzing the entire drive, so our software assumes
the worst case at all times. In actuality, the probability is likely to be higher than the value
calculated using the worst case assumption.

3.3.3 The 4KiB Problem
Although we defined the “worst case” target data layout, it is not truly the worst case when the
transaction size is equal to the target block size—4KiB in our implementation. A non-worst
case layout with small transaction sizes should generally have a much higher confidence than
the worst case layout because there are more blocks containing target data. This is not true
when the transaction size and target block size are equal. Due to our sampling strategy and
target block hash database, not all transactions on the drive containing target data are actually
target transactions. Consequently, more samples are needed for 4KiB transactions than other
larger transactions for the same confidence. Recall that blocks are sampled to hash them and
query a database to see if it is a known block. In our implementation, target blocks are stored
in the database only at target block offsets rather than sector offsets to avoid hashing redundant
data.

Assume that our target data are in a 1-part layout, all together in contiguous sectors starting at
the beginning of a drive. The first transaction block, which covers the first 4KiB block starting
at offset zero, is in our database because it is on a target block size boundary. However, due to
overlapping transactions, the second transaction block begins at sector offset seven or 3.5KiB
into the drive. The block will not be in the database because target blocks only begin at 4KiB
offsets. Therefore, the second transaction block, even though it is full of target data, is not a
target transaction. Similarly, the next six transactions will not be target blocks. Only every
eighth block will be a target block when the beginning of the transaction aligns with a 4KiB
boundary again. Figure 3.15 illustrates how transaction blocks on disk are unaligned with the
hash blocks in the source file. This means that there are less target blocks when the transaction
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Figure 3.15: The 4KiB problem. Transactions are overlapping so when the transaction size is equal
to the target block size, the transactions do not align with the target blocks. As shown here, all
transactions contain target data, but only every eighth transaction block contains a target block.

size is equal to the target block size than when a larger transaction size is used. This effect is
clearly seen in Figure 3.10 which shows that 4KiB transactions requires more data samples than
8KiB and 16KiB transactions for the same confidence. Furthermore, there can be even fewer
target transaction blocks than the worst case layout in this situation.

There are two ways to fix this problem. First is to store every sector offset in the database so
that a match will be found no matter where in the file the transaction begins. However, this will
make the database eight times larger and the same sectors would be stored multiple times. The
second and better way is to simply not use a 4KiB transaction size. The results in Chapter 4
show that sampling using a larger transaction size is much more efficient, and is not affected by
this problem because a using a transaction size that is double the size of the target block size
will contain enough block offsets that at least one will be on a 4KiB boundary. There is simply
no advantages to sample using the target block size. The transaction size should be a minimum
double the target block size for an increase in both performance and probability.
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3.3.4 Scheduling
Scheduling is the process of deciding which blocks to sample, and is determined by a software
component called the scheduler. Our scheduler implements the sampling strategy described in
Section 3.3 as well as additional strategies that focus on the most efficient sampling of arbitrary
drives. Garfinkel and Nelson [8] found that it is faster to read random blocks sequentially than
to read them randomly for both magnetic disk drives and solid state drives. This property can
be exploited by generating a list of block numbers ahead of time, sorting them, and then reading
the blocks in order.

A topic that has come up frequently during reviews of scheduling is the decision to use fully
uniform random sampling. With uniform sampling, any block of data are equally likely to be
read. We could target specific areas of the drive depending on the file system present. There
are several reasons why we stuck with uniform sampling. First, using any kind of metadata
would mean that we need to develop rules for each file system type, creating much more work.
Second, if the sampling is biased in any way, an adversary who wants to hide their data would
know which areas of the drive were less likely to be sampled. A fully uniform scheduler is
the only guaranteed method of not creating a safe haven for the adversary. Finally, the last
reason is that it would complicate our probability equations. The urn problem is simple to
understand and use, but if our samples are biased, then it is no longer a valid model. Targeting
specific file systems could potentially increase our chances of finding target data, however, it
could also decrease our chances or the probability model may be too complicated to compute
the confidence for.

3.4 Experiments
After detailing how sampling would be done, we tested physical drives to measure the actual
time taken to sample a drive. The main objective of the experiments was to determine the op-
timal transaction size on a drive which gave the maximum confidence in the minimal time, and
find a way to quickly test a drive to find the optimal transaction size. As discussed previously,
the confidence will change depending on the transaction size. Using a small transaction size
increases the number of samples which improves the confidence. On the other hand, a large
transaction size increases the rate that data are read from the drive. Either could potentially
increase our chances of finding target data. Using our software, we measured the time it takes
to sample different numbers of samples using different transaction sizes.

When conducting the same experiments repeatedly for multiple trials, we were careful not to
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Drive Brand/Model Model Number Capacity RPM
Hard Disk 1 Seagate Barracuda ST500DM002 500 GB 7200
Hard Disk 2 Seagate Barracuda ST31000528AS 1TB 7200
Hard Disk 3 Western Digital Green WD15EARS 1.5 TB 5400
Solid State 1 Samsung MMD0E56G5MXP-0VB 256 GB N/A
Solid State 2 Intel SSDSA2CW600G3 600 GB N/A

Table 3.1: List of drives used for experiments.

bias results. The danger was that data being read were cached, making read operations faster
than they should be. The operating system cache in memory was cleared after every individual
trial by running the following commands:

# sync; echo 3 > /proc/sys/vm/drop_caches

which writes any in-memory changes to disk and then removes cached content. The other cache
that we considered was the disk cache. Modern hard drives contain a small circuit inside the
drive called the disk controller. Data are read and written by communicating with the controller
which handles the details of the operation. Controllers can be very intelligent, utilizing algo-
rithms and cache space to predict sectors that might be read in the near future and cache them
ahead of time. We first attempted to disable this feature, but found that because controllers
are designed by each individual manufacturer, there was no universal command to disable the
disk cache or any guarantee that the controller would actually obey the command. Instead, our
software was programmed to not read from the same region of the disk twice if possible, so
that the cache could not be utilized. We prepared five consumer grade hard drives for testing:
three hard disk drives (500GB, 1TB, and 1.5TB) and two solid state drives (256GB and 600GB
drive). The model numbers for all drives are in Table 3.1. All experiments were conducted on a
HP 8570p laptop running a minimal installation of Fedora 18. The hard drives were attached to
the laptop using an external hard drive dock connected with eSATA.

In addition to timing tests, we verified our probability model using simulations. This allowed
us to quickly generate results as well as try out different target data layout images as described
in Section 3.3.2 without having to re-write large amounts data to a disk for each test. The
simulations had a dual purpose of checking that our probability models were correct and also
for getting an idea of what the true confidence is when sampling under worst case layout as-
sumptions. It is very unlikely for the worst case scenario to actually occur, so our confidence is
actually higher in practice. As we will see in Chapter 4, the true confidence was much higher.
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3.5 Application Overview
We built a fast and effective forensics tool called drivesampler for our experiments that can
locate known content on a hard drive using sector sampling to search for known blocks. This
tool does not use conventional forensic techniques such as analyzing the file system or file
carving. We are able to return results quickly because the application is based on uniform
random sampling which can immediately produce probabilistic results. The confidence level
improves as more time is spent sampling more data.

Our tool is only effective in situations where the user is looking for known data.1 One example
is a law enforcement officer searching for evidence of child pornography from a large num-
ber of storage devices. This scenario works because it is unlikely for a user in possession of
child pornography to only have files that have never been found before. As long as a database
is kept with block hashes of child pornography files that have been previously found by law
enforcement, sector sampling can quickly find traces of a file that might be on the drives.

We have also placed a large emphasis on speed to be effective in a situation where time is
very limited. Sector sampling will never be a replacement for a thorough analysis of a hard
drive, however, it can perform a preliminary to determine how much time should be invested
on that drive. These time constraints may be caused by any number of reasons. For example,
an examiner may have a hard deadline such as a case trial date and needs leads to find evidence
quickly. Some situations may call for speedy processing, such as a customs and border agent
who wants to quickly check hard drives for suspicious data.

The tool does not require a technical expert to use it effectively. The process was designed
in a way that minimizes user intervention and can process a drive in the most efficient way
automatically. The results are easy to comprehend by most users as they are told if the tool
has found any known content on a drive and how confident it is with finding data. The user
may then act accordingly based on that confidence level. A forensic examiner may be more
interested in more detailed data such as exactly what kind of files were detected and how many
samples were taken.

3.5.1 Requirements
When designing the software, the following were the minimal requirements.

1While outside the scope of this thesis, our tool has a mode to check a wiped drive which scans for non-null
bytes. The confidence model is different than the one described here for this mode due to a different worst case
layout.
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Non-Functional:

• Compiles and runs on major Linux distributions with freely available tools and libraries
(Windows support secondary)

• Must support a command line or graphical interface (command line prioritized)
• Will not write data to the target drive under any circumstances

Functional:

• Usable as a stand alone tool or with a back end database
• Provides real-time feedback to user about current progress of sampling and analysis
• User can give either a target confidence or time, and the program will find the optimal

sampling strategy

User: Time or 
Confidence 

Compute # 
of samples 

required 

Perform 
proportional 
speed tests  

Predict time 

Use default 
% of drive 

Perform 
proportional 
speed tests  

Predict 
confidence 

Data: Projected 
time for 

transaction sizes 

Data: Speed test 
parameters 

Data: Speed test 
parameters 

Drive Size 

Transaction 
Size(s) 

Data: Projected 
confidence for 

transaction sizes 

Use optimal 
transaction size for 

best time/confidence 

Confidence Time 

Figure 3.16: Flowchart showing how the optimal transaction size is chosen based on the parameter
given by the user.
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3.5.2 User-Program Interaction
1. The user has a hard drive to scan for any known files.
2. The user connects the hard drive to a computer running Linux using an eSATA port.
3. The drive is detected as a storage device by the operating system.
4. The user runs drivesampler with the device name and also sets either a target confidence

or a time.
5. The user can pass additional options to override the default values, such as the assumed

target data size and target confidence level.
6. The program samples the drive to estimate sampling speed.
7. If a time constraint is given, the program attempts to maximize the confidence that a given

amount of target data are not present.
8. If a target confidence is given, the program attempts to minimize the time.
9. The user sees the speed at which the drive is being sampled and the estimated time/confidence.

10. The screen is continuously refreshed with any information found by the analyzer.

3.5.3 Technologies Used
C/C++ The primary programming language used for the development of drivesampler and

all experiments. The widely supported GNU Compiler Collection (GCC) was used to
compile the code. C++ was chosen for its high performance and portability.

Boost Free cross-platform libraries for C++ supporting a variety of common tasks. Boost was
used primarily for threading support and the timer library for measuring read speed accu-
rately. License: Boost software license.

Intel Thread Building Blocks (TBB) Free cross-platform library with components to support
development of multithreaded software. TBB has a variety of threading-compatible con-
tainers which are not a part of Boost. Some of these containers were used to manage data
being passed between different threads. License: GPLv2 with run-time exception.

3.5.4 Software Architecture
Sector sampling can be done in different ways and be used for various purposes, so our archi-
tecture was designed to be able to accommodate these needs. The central component is called
the scanner which accepts rules and constraints, known as options, from the user interface. The
scanner then load three independent components: a scheduler, reader, and an analyzer. These
components are modular and have defined input and output interfaces so that they can be re-
placed. We identified these three components to be the key parts that need to be made modular
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Figure 3.17: The software architecture. The scanner is the core of the program and controls three
components: the scheduler, the reader, and the analyzer. Each component can be replaced or
expanded as needed. The scanner receives input from the user interface and returns results.

to give flexibility for any sector sampling task.

The scheduler, as discussed in Section 3.3.4, is responsible for determining the blocks to read
and their order based on the requirements such as the target confidence. The reader reads the
data from a drive or file by following the order given by the scheduler. The data in memory are
then passed to the analyzer which checks for interesting data such as known blocks. Finally,
the analyzer’s findings are sent back to the scanner which can output its results to the interface.
Each component runs in its own thread as each has a potential to be a bottleneck in the process.
By using multiple threads, one component will not delay the next from running until it has
completed.
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CHAPTER 4:
Results

We performed tests with the goal of finding the optimal transaction size for sampling and by
examining the effects on speed and probability, a range of good transaction sizes appeared.
Overall, results show that the three hard disk drives tested had similar characteristics, regardless
of differences in capacity or speed. There were some minor differences but there were no
significant outliers that stood out from other drives. There are massive quantities of hard drives
in the world and we tested only a handful of them, so our tests were focused on testing drives
against themselves and each other with repeated tests while staying mindful of findings that
could prove useful for unknown drives.

4.1 Probability Verification
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Figure 4.1: Percentage of 10,000 simulated sampling trials on a 1TB drive with 10MiB of target data
that read a target transaction block using a target confidence of 90% (dotted line) assuming a worst
case layout. The worst case simulation follows the target confidence as expected, and n-part layouts
do better than worst case especially for larger transaction sizes. N-part layouts at 4KiB transactions
behave similarly to the worst case layout due to the 4KiB problem (see Section 3.3.3).

We prepared a simulated environment of 1TB drives with 10MiB of target data randomly placed
on the drive using several different layouts. The drives were then randomly sampled with no
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knowledge about the layout with a target confidence of 50% and 90% assuming worst case
layout and 10MiB target data. We performed the test 10,000 times for each drive and counter
the number of trials where target data were found.

These results verified that our probability model was accurate and also confirmed our hypothesis
that the true probability of finding data is higher than the worst case confidence. When the target
data are divided into many pieces like the 128-part layout, the increase of target transaction
blocks significantly improves the chances of locating one. Figure 4.1 shows the percentage of
the trials where target data were found using a 90% target confidence. The worst case line on
both graphs follow the target confidence closely, which is expected as the sample size calculated
is based on worst case assumptions. When the target data are split into pieces, we find the targets
more often because there are more target transaction blocks. In other words, the drive is being
over-sampled, especially for layouts that have more parts. Similar results were seen for other
target confidence, but lower target confidence generally showed an even greater number of times
where the target was found.

4.2 Optimal Transaction Size
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Figure 4.2: Sampling read speed in different “regions” of the 1TB drive. The green, red, and blue
bars represent the first, middle, and last third of the drive respectively. Sampling speed is consistent
across different regions of the drive. The results shown are averaged from 1000 trials.

We began by checking whether different areas of the drive, or “regions”, behave differently.
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The concern was that the physical location of data may affect sampling speed due to differences
in seek time and rotational latency (the time needed for the disk sector to rotate around to the
head). To do this, we divided a test drive into three equal regions and performed the same
uniform sampling test of 1,000 blocks at different transaction sizes. There was no noticeable
difference between the three regions on any drive. Figure 4.2 shows that the read speed across
different regions on the 1TB drive was nearly the same. Based on these results, further tests
were conducted across the whole drive instead of smaller regions.
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Figure 4.3: Time required for 90% confidence for 1TB drive with 10MiB target data. For the worst
case layout, 64KiB was the optimal transaction size. It was able to achieve 90% confidence in 26
minutes. If the layout was known, 8KiB was the optimal transaction size.

With a better understanding of how well our probability model works and characteristics of
hard drive sampling, we now test how long it takes to sample a hard drive to achieve a certain
confidence level with our application. We first timed how long it would take to sample for 90%
confidence if the layout of the drive was known. If the target data layout was known, then the
smallest transaction size of 8KiB was the fastest. However, because the layout is not known,
we found a 64KiB transaction size to be the fastest for all of our tests on the three test hard
disk drives. 32KiB followed very closely as the second fastest transaction size, and 16KiB
in third place. Figure 4.3 show the results of a 90% target confidence sampling on the 1TB
drive which shows that 64KiB is the ideal transaction size for this drive. One could argue that
a smaller transaction size is probably a more practical transaction size because the worst case
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layout is very unlikely to occur. We decided that 64KiB is a good compromise because its
speed was similar for both worst case and non-worst case layouts. This ensures that the optimal
transaction size is used should the drive happen to have the worst case layout, and there is no
need to guess the true confidence because it is roughly the same.

4.3 Speed Prediction and the Quick Test
By testing for certain confidence levels at different transaction sizes, we concluded that 64KiB
was the ideal transaction size for our test drives, however, there is a major problem with this.
We only found that 64KiB was the ideal transaction size after we had sampled the drive multiple
times using all transaction sizes. All of our test drives yielded the same result, but there is no
guarantee that all hard drives would behave the same way. If sector sampling is to be used for a
forensics tool, there needs to be a way to find the optimal transaction size on any drive before
sampling. This research began with an operational purpose in mind, so this problem was being
considered from the beginning.

In addition to identifying drive sampling characteristics, a secondary objective was to develop
a “quick test” that can determine the optimal transaction size within a short time frame. Our
initial target time frame was 15 seconds, but we found that the quick test could be even less than
10 seconds. This quick test is crucial if the user will be allowed to give a time limit as we would
need to know roughly how long it will take to sample for each transaction size. Based on all
earlier results, we narrowed down the optimal transaction size range to be between 8KiB and
128KiB. We believe this is wide enough of a range without going into 4KiB or 256KiB which
had the biggest drop in speed compared to its neighboring sizes. We sampled 1000 blocks,
a small number compared to what is needed for a high confidence, to estimate the time for
each transaction size. This failed for two reasons. First, the data were inconsistent for each
drive because the seek time is different depending on the drive size. The difference between
the estimated time and the true time varied greatly. Second, sampling 1000 blocks for each
transaction size took over half a minute which was double our target time frame. We also
experimented with 10 and 100 samples, but then the variance became too large because the
seek time changed greatly, especially for larger drives.

After trying different methods, we found that sampling a small number of blocks from a pro-
portional size area of the drive size was more accurate than sampling the whole drive. We knew
from our earlier tests that sampling different regions of the drive did not affect the speed, so
sampling only a small portion of the drive was sufficient. For example, if 100,000 transaction
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Transaction Size
Samples 8K 16K 32K 64K 128K Total
10 0.052 0.055 0.058 0.061 0.080 0.306
100 0.528 0.554 0.577 0.609 0.800 3.068
200 1.044 1.097 1.143 1.208 1.617 6.109
300 1.570 1.658 1.727 1.832 2.485 9.273
1000 5.374 5.638 5.880 6.229 8.469 31.59

Table 4.1: Average time required (in seconds) for one pass of a quick test based on 1000 trials. The
increase in time is linear to the number of samples. Sampling 300 blocks or 100 blocks three times
for the whole range of transaction sizes takes less than 10 seconds.

blocks were required for the target confidence, we could estimate the time by sampling 100
blocks from 0.1% of the drive

(
100

100,000 = 0.1%
)

. The average seek time between transactions
would be the same, so the greatest cause of the variance was mitigated. This time could be
multiplied by 1,000 to obtain a estimated projected time to sample 100,000.
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Figure 4.4: Time projected to sample for 90% confidence on 1TB drive using 300 samples. The
estimated time underestimated the actual time (blue line) more than half of the time, but successfully
guessed the optimal transaction size of 64KiB more than half of the time (64%). The remaining trials
guessed 32KiB as the optimal transaction size.

The 100 block quick test successfully guessed the optimal transaction size of 64KiB 54% of the
time. It made a slightly incorrect guess of 32KiB 44% of the time, and a significantly incorrect
guess of 16KiB 2% of the time. As seen in Table 4.1, a quick test of 100 samples only took 3
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Sample Count
Transaction Size 100 200 300 100 x2 100 x3 100 x5
8K 90.392 74.008 59.688 71.276 60.034 40.668
16K 71.110 53.647 44.216 48.720 39.943 31.545
32K 61.980 43.012 40.431 45.799 36.666 28.048
64K 57.348 39.639 30.453 40.415 36.494 28.898
128K 67.444 49.008 41.430 52.051 45.454 38.103

Table 4.2: Standard deviation of 1,000 trials for projected times using samples of 100, 200, 300, and
averages of two, three, and five 100-sample trials at different transaction sizes. The greater the value,
the more variance seen in the trials. There is no significant difference between using 300 and three
100-sample trials and takes about the same amount of time. Using three 100-sample trials may be
better so that outliers can be detected and discarded.

seconds, so extra time can be used to improve the results. Increasing the sample size yielded
a tighter range of projected times, but the point of diminishing returns came early at around
300 samples. This may be the natural variance that comes from sampling only a few hundred
blocks. Figure 4.4 shows the projected time of the 300-sample quick test trials versus the actual
time to sample. The 300 sample quick test guessed 64KiB 64% of the time and 32KiB 36% of
the time. This improved on the 100 sample quick test because it guessed correctly 10% more
and did not guess 16KiB even once. We also took the average of 3 100-sample results which
guessed 64KiB 58% of the time and 32KiB 42% of the time. While this did not guess correctly
as much as the 300 sample quick test, it was also successful in eliminating the 16KiB guess.
Table 4.2 shows the standard deviation of 1,000 trials of sampling different sample sizes and
by taking the average of multiple 100 sample tests. We did not find sufficient evidence to say
if either sampling many blocks or taking the average of smaller tests is better, but taking the
average may be more practical as it allows multiple trials to be performed until the tests passes
a time threshold and also allows for significant outliers to be discarded.
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CHAPTER 5:
Conclusion

We looked at sector sampling as a viable method of rapid hard drive forensics and showed how
statistics can help to give useful information about a drive. Through analysis and testing, we
accomplished the following:

• Designed a simple sampling strategy that can find target data in arbitrarily sized blocks.
• Defined a general equation to find the confidence for any storage device and verified that

our probability model is correct through experiments.
• Found hard drive sampling characteristics.
• Developed a sector sampling program.

The power of random sampling can be understood by the simplicity of the probability model.
The simplicity is a strength because the computation is easy and analysis can be performed
on any drive independent of the drive content including file systems, partitions, and operating
systems as long as the sector size is known. By keeping the probability model simple, the code
is also simple and the scheduling algorithm is nothing more than a slightly modified uniform
random number generator. By using this robust framework, our program is able to perform
analysis on hard drives quickly and efficiently for any scenario or hardware environment.

5.1 Future Work
While we believe that we have used a representative sample of modern consumer grade hard
drives and solid state drives in this thesis, there is room for further drive testing. Our testing
results is based on only a handful of drives and it may turn out that some drives behave in
completely different ways. Hard disk drives have evolved rapidly in a time span as small as a
decade with advances in areas such as magnetic recording techniques and increased cache size,
data sampling on newer drives may perform differently than the results found in this thesis. We
also limited our test drives to the 3.5-inch form factor, which are more common in desktops and
servers. The other common form factor found in most laptops, the 2.5-inch, often has a slower
rotational speed which could affect sampling performance.

There is also room for trying different connection methods to the drives. We used the fastest
option available to us with a drive dock connected with eSATA. This is likely the ideal setting,
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but in the real world there may be cases where sub-optimal connections must be used such as
USB to read from a mobile device where the storage drive cannot be easily removed. Even with
eSATA, sampling may be optimized further by taking advantage of modern hard drive controller
features such as Native Command Queuing (NCQ) which automatically reorders the blocks
to be read to minimize the overall read time. Our program reads blocks strictly in the order
determined by the scheduler, but letting the controller handle the scheduling may yield better
results. A related method includes Asynchronous I/O (AIO) which may provide performance
gains and is supported in recent versions of the Windows and Linux kernels.

The scheduler can be improved to be more robust using other techniques. Currently, the sched-
uler calculates the required sample size and samples uniformly from beginning to end. We
assume that the user would not halt the program while it is running so that enough samples can
be collected to achieve the desired confidence level. If target data are located near the end of the
drive, then this strategy fails if the user interrupts the program before reaching the target. Even
an estimated confidence cannot be given because the samples taken are biased. This can be
mitigated by using a different sampling strategy. One possible strategy may be to sample only
a fraction of the required amount and make multiple passes. The disadvantage of this approach
is that the blocks to sample are further away, adding additional seek time to the sampling time
which already has less than optimal read speed, however, we do not know how much slower
making multiple passes of fewer samples would be. A more complex system may begin by
dividing the drive into multiple “bands” where each band is an equally sized, non-overlapping
segment of the drive. All bands together will make up the entire drive. First, a random band is
selected, and only blocks in that band is randomly sampled. Only a fraction of the total required
samples will be sampled in this band. Then, another band will be randomly selected and sam-
pling is done within that band. This process of selecting a band and sampling within the band is
repeated until the user stops the program. While this does not enable uniform random sampling,
this makes the end of the drive just as likely to be sampled as the beginning of the drive while
maintaining the speed advantage gained from sampling nearby blocks with extended seek times
only to jump to the next band.

Finally, there is much more that could be done with random sampling than what we have dis-
cussed. Here we only use the idea of looking up the sampled blocks in a hash block database for
known files, however, there is other research on block based forensics. There have been signifi-
cant work on the file fragment classification problem where a file type must be identified given
only a part of the file [15], [18], [19]. Giving the user feedback on what kind of files are on the
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drive, even if no known files were found. Knowing that a drive is full of images or executables
may prove useful in an investigation. Our software architecture was designed so that the block
analyzer could easily be expanded in new ways. We have only scratched the surface of what our
drive sampling framework is capable of. Faster and more efficient digital forensic techniques
are a high priority, and as more work is done in this area, drive sampling will improve and users
will benefit with more broad and accurate information.
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